Дата и время

Сопротивление элементов схемы замещения в сети 0,4 кВ

Раздел: Релейная защита и автоматика

Содержание

Для того чтобы рассчитать токи КЗ в сети до 1000 В, следует первоначально составить схему замещения, которая состоит из всех сопротивлений цепи КЗ. Активные и индуктивные сопротивления всех элементов схемы замещения выражают в миллиомах (мОм).

Как определять сопротивления отдельных элементов схемы замещения, об этом вы и узнаете в этой статье.


1. Определение сопротивлений питающей энергосистемы


Активные и индуктивные сопротивления питающей энергосистемы рассчитывают на стороне ВН понижающего трансформатора и приводят к стороне НН по формуле 2-6 [Л3. с. 28].

Активные и индуктивные сопротивления питающей энергосистемы

На практике можно не учитывать активное сопротивление энергосистемы, а значение индуктивного сопротивления приравнивать как к полному сопротивлению энергосистемы (на точность расчетов это никак не скажется). В этом случае значение (в Омах) индуктивное (полное) сопротивление энергосистемы определяется по формуле 2-7 [Л3. с. 28].

Индуктивные сопротивления питающей энергосистемы определяется по формуле 2-7

После того как определили индуктивное сопротивление системы по формуле 2-7 [Л3. с. 28], данное сопротивление нужно привести к стороне НН по формуле 2-6 [Л3. с. 28].

Индуктивное сопротивление системы, также можно определить по формулам представленных в ГОСТ 28249-93:

Определение системы по ГОСТ 28249-93

Как мы видим формула 1 из ГОСТ 28249-93 соответствует формулам 2-6, 2-7 из [Л3. с. 28].

Пример

Определить сопротивление энергосистемы, учитывая, что ток КЗ со стороны энергосистемы на зажимах ВН трансформатора 6/0,4 кВ составляет в максимальном режиме – 19 кА, в минимальном – 13 кА.

Решение

Определяем индуктивное сопротивление энергосистемы по формулам 2-6, 2-7.

Сопротивление энергосистемы в максимальном режиме, приведенное к напряжению 0,4 кВ:

Сопротивление энергосистемы в максимальном режиме, приведенное к напряжению 0,4 кВ

Сопротивление энергосистемы в минимальном режиме, приведенное к напряжению 0,4 кВ:

Сопротивление энергосистемы в минимальном режиме, приведенное к напряжению 0,4 кВ


2. Определение сопротивлений трансформаторов


Значения (в мОм) полного (zт), активного (rт) и индуктивного (хт) сопротивления понижающего трансформатора приведенных к стороне НН определяются по формулам: 2-8, 2-9, 2-10 [Л3. с. 28].

Формулы определения сопротивлений трансформатора

На большинстве трансформаторов 10(6)/0,4 кВ имеется возможность регулирования напряжения путем переключения без возбуждения (ПБВ) при отключенном от сети трансформаторе как со стороны высшего так и низшего напряжения. Напряжение регулируется со стороны высшего напряжения на величину ±2х2,5% от номинального значения.

Формулы определения сопротивлений трансформатора с ПБВ±2х2,5%

Для трансформаторов с пределом регулирования ПБВ ±2х2,5%, полное сопротивление будет изменятся в пределах:

Изменение полного сопротивления трансформатора с ПБВ±2х2,5%

Значения индуктивного и активного сопротивления трансформатора по ГОСТ 28249-93 определяются по формулам:

Формулы определения сопротивлений трансформатора по ГОСТ 28249-93

Как видно, формулы из ГОСТ 28249-93 совпадают с формулами приведенными в [Л3. с. 28].

Для упрощения расчета активного и индуктивного сопротивления тр-ра, можно использовать таблицу 2-4 [Л3. с. 29] для схем соединения обмоток трансформатора Y/Yo и ∆/Yo. Причем для схем соединения обмоток трансформатора ∆/Yo, значения активного (r0) и индуктивного (х0) сопротивления нулевой последовательности равны значениям активного и индуктивного сопротивления прямой последовательности: r0 = rт и х0 = хт.

Таблица 2.4 - Значения активных и индуктивных сопротивлений трансформаторов

Пример

Определить сопротивление трансформатора ТМ 50/6 со схемой соединения обмоток ∆/Yо.

Решение

По справочным данным определяем технические данные трансформатора: Sном. = 50 кВА, Uном.ВН = 6,3 кВ, Uном.НН = 0,4 кВ, Uкз = 4%, ∆Ркз=1,1 кВт.

Определяем полное сопротивление трансформатора для стороны 0,4 кВ по формуле 2-8:

Определяем полное сопротивление трансформатора для стороны 0,4 кВ по формуле 2-8

Определяем активное сопротивление трансформатора для стороны 0,4 кВ по формуле 2-9:

Определяем активное сопротивление трансформатора для стороны 0,4 кВ по формуле 2-9

Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по формуле 2-10:

Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по формуле 2-10


3. Определение сопротивлений кабелей


Значения активного и индуктивного сопротивления кабелей определяются по формуле 2-11 [Л3. с. 29].

Значения активного и индуктивного сопротивления кабелей определяются по формуле 2-11

Таблица 2.5 - Удельное сопротивление кабелей с алюминиевыми и медными жилами


4. Определение сопротивлений шин и шинопроводов


Сопротивление шин и шинопроводов длиной 5м и меньше, можно не рассчитывать, так как они не влияют на значение токов КЗ.

Значения активного и индуктивного сопротивления шин и шинопроводов определяется аналогично кабелям.

Значения активного и индуктивного сопротивления шин и шинопроводов

Зная расстояние между прямоугольными шинами, можно приближенно определить индуктивное сопротивление (мОм/м) по формуле 2-12 [Л3. с. 29].

Формула по определению индуктивного сопротивления шин

Таблицы 2.6, 2.7 - Активное и индуктивное удельные сопротивления шин и шинопроводов

Пример

Определить активное и индуктивное сопротивление алюминиевых шин сечением 60х8 мм2 от трансформатора ТМ-630/6 до распределительного щита 0,4 кВ, общая длина проложенных от трансформатора до РП-0,4 кВ составляет 10 м. В данном примере определим сопротивление шин, когда шины находятся как в горизонтальном положении, так и в вертикальном.

Решение

4.1 Определим активное и индуктивное сопротивление шин при горизонтальном расположении.

По таблице 2.6 определяем погонное активное сопротивление rуд. = 0,074 мОм/м, индуктивное сопротивление определяем по формуле 2-12 [Л3. с. 29].

Определяем индуктивное сопротивление шин при горизонтальном расположении

где: расстояние между шинами первой и второй фазы а12 = 200 мм, между второй и третью а23 = 200 мм, между первой и третью а13 = 200 + 60 + 200 = 460 мм, а среднегеометрическое расстояние:

Определяем среднегеометрическое расстояние шин при горизонтальном расположении

Сопротивление шин от тр-ра до РП-0,4 кВ:

Определяем сопротивление шин при горизонтальном расположении

4.2 Определим активное и индуктивное сопротивление шин при вертикальном расположении

При вертикальном расположении шин, активное сопротивление не изменяется, а индуктивное сопротивление составляет:

Определяем индуктивное сопротивление шин при вертикальном расположении

где: расстояние между шинами первой и второй фазы а12 = 200 мм, между второй и третью а23 = 200 мм, между первой и третью а13 = 200 + 8 + 200 = 408 мм, а среднегеометрическое расстояние:

Определяем среднегеометрическое расстояние шин при вертикальном расположении

Сопротивление шин от тр-ра до РП-0,4 кВ:

Определяем сопротивление шин при вертикальном расположении


5. Определение сопротивлений воздушных линии


Активное и индуктивное сопротивления линий определяется по той же формуле 2-11 [Л3. с. 29], что и кабели.

Значение индуктивного сопротивления для проводов из цветных металлов можно приближенно принимать равным 0,3 мОм/м, активного по табл. 2.8.

Таблица 2.8 - Сопротивления неизолированных медных, алюминиевых и сталеалюминиевых проводов

Для стальных проводов активное и индуктивное сопротивление определяется исходя из конструкции провода и значения протекающего по нему тока. Зависимость эта сложная и математическому расчету не поддается, из-за большого количества переменных (сечение провода, температура окружающего воздуха, которая постоянно меняется в течении года, времени суток; нагревом провода током КЗ), которые влияют на значение сопротивление стальных проводов.

Поэтому учесть все эти зависимости практически не возможно и на практике активное сопротивление условно принимают при температуре 20°С и определяют по кривым зависимости стальных проводов от проходящего по ним токам, представленных в приложениях П23-П27 [Л4. с. 80-82].

Активное сопротивление стальных проводов. Приложение П23-П26

Индуктивное сопротивление стальных проводов. Приложение П27

Активное и индуктивное сопротивление для проводов самонесущих изолированных (СИП) определяют по таблицам Б.1, Б.2 [Л5. с. 23-26].

Таблица Б.1 Активное сопротивление токопроводящих жил проводов при 90 °С на частоте 50 Гц

Таблица Б.2 Расчетные значения индуктивного сопротивления изолированных проводов


6. Определение сопротивлений реакторов


Номинальные параметры реактора уже заданы в обозначении самого реактора типа РТТ и РТСТ. Например у реактора типа РТТ-0,38-100-0,15:

  • • 0,38 – номинальное напряжение 380 В;
  • • 100 – номинальный ток 100 А;
  • • 0,15 – индуктивное сопротивление при частоте 50 Гц равно 150 мОм.

Активное сопротивление для исполнения У3 (алюминиевая обмотка) - 17 мОм, для исполнения Т3 (медная обмотка) – 16 мОм.


7. Определение сопротивлений трансформаторов тока


Значения активных и индуктивных сопротивлений трансформаторов тока принимаются по приложению 5 таблица 20 ГОСТ 28249-93. Активным и индуктивным сопротивлением одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.

Согласно [Л3. с. 32] для упрощения расчетов, сопротивления трансформаторов тока не учитывают ввиду почти незаметного влияния на токи КЗ.

Таблица 20 - Значения активных и индуктивных сопротивлений трансформаторов тока ГОСТ 28249-93


8. Определение сопротивлений автоматических выключателей, рубильников, разъединителей


Приближенные значения сопротивлений разъемных контактов коммутационных аппаратов напряжением до 1 кВ определяются по приложению 4 таблица 19 ГОСТ 28249-93. При приближенном учете сопротивление коммутационных аппаратов принимают - 1 мОм.

Таблица 19 - Значения сопротивлений разъемных контактов коммутационных аппаратов напряжением до 1 кВ ГОСТ 28249-93


9. Определение сопротивлений контактных соединений кабелей и шинопроводов


Значения сопротивления контактных соединений кабелей и шинопроводов определяют по приложению 4 таблицы 17,18 ГОСТ 28249-93. Для упрощения расчетов, данными сопротивлениями можно пренебречь. При приближенном учете сопротивлений контактов принимают:

• rк = 0,1 мОм - для контактных соединений кабелей;
• rк = 0,01 мОм - для шинопроводов.

Таблицы 17,18 -  Значения сопротивления контактных соединений кабелей и шинопроводов ГОСТ 28249-93


10. Список литературы


1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
2. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
3. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
4. Голубев М.Л. Расчет токов короткого замыкания в электросетях 0,4 - 35 кВ. 2-e изд. 1980 г.
5. ТУ 16-705.500-2006. Провода самонесущие изолированные и защищенные для воздушных линий электропередач.

Просмотров: 5931

Статья создана: 20.12.2017



Поделиться:


Читать еще:



Закрыть
Имя:
396 + 94 =  
Добавить комментарий:
Имя:
396 + 94 =