Ежегодно в сетях напряжением 6-35 кВ повреждаются примерно 6-8% трансформаторов напряжения (ТН). Причиной повреждения является длительное протекание по первичной обмотке ТН токов, величина которых значительно превышает максимально допустимую по условию тепловой устойчивости изоляции обмотки. Эти токи возникают при феррорезонансных процессах (ФРП) в контуре, образующемся при определённых режимах сети, когда после угасания дуги через индуктивность обмоток ТН «стекает» ёмкостный заряд.
Насыщение магнитопровода может возникнуть, если энергия, запасённая в емкостях сети, к моменту угасания дуги окажется больше порогового значения электромагнитной энергии, запасённой в индуктивностях ТН.
В [Л1] приведены три причины возникновения ФРП:
1. Величина ёмкости сети Сэкв должна находиться в интервале, определённом пределами изменения индуктивности ТН, т.е.
где:
- Lхх и Lн — индуктивности холостого хода и насыщения, соответственно;
- w — угловая частота напряжения сети.
Приведенные в [Л2] расчёты показали, что для ТН типа ЗНОМ-35 при емкостном токе сети равном 4 А и более на один ТН феррорезонанс не возникает. Однако, в сетях с воздушными линиями, особенно на напряжении 6-10 кВ, емкостный ток может быть меньше.
2. Феррорезонанс возникнет в контуре с резонансными параметрами после скачкообразного понижения напряжения от Uл до Uф при отключении однофазного замыкания (ОЗЗ) на землю. Феррорезонанс в сети с ТН не возникает при номинальной индукции, равной 0,9 Тл. В настоящее время величина индукции выпускаемых ТН составляет 1,5 Тл.
3. Величина энергии, поступающей в феррорезонансный контур при каждом изменении индуктивности ТН, должна быть больше величины потерь в нём. Данный показатель позволяет оценить эффективность включения резистора сопротивлением rвт=25 Ом в схему разомкнутого треугольника ТН, как указано в ПУЭ. Величина сопротивления резистора определена длительно допустимой мощностью ТН, равной 400 ВА при напряжении 100 В.
В соответствии с [Л2] эквивалентная ёмкость сети определяется из выражения:
где: R1 — сопротивление rвт, приведенное к первичной стороне и определяемое из выражения:
где:
— коэффициент трансформации ТН. В соответствии с ПУЭ rвт= 25 (Ом).
Ёмкости Сэкв соответствует емкостный ток сети, определяемый из выражения:
Для сети напряжением 35 кВ Ic= 0,013 А, что значительно меньше фактических значений Ic. Для сети напряжением 10 кВ Ic= 0,044 А, что также значительно меньше фактических значений Ic.
Таким образом, включение резистора сопротивлением 25 Ом в схему разомкнутого треугольника ТН не имеет практического эффекта, а уменьшение его сопротивления приведёт к недопустимому для ТН увеличению мощности.
Из практики известно, что наступление феррорезонанса происходит, когда емкостной ток на ТН находится в интервале 0,3-4 А, что характерно для воздушных линий напряжением 6 -35 кВ. Поэтому целесообразно включение между фазным проводником и землёй конденсаторной установки необходимой мощности.
Для исключения феррорезонанса в сети 35 кВ необходимо в нейтраль силового трансформатора включить высоковольтный резистор.
В сети 6 — 10 кВ необходимо в обмотку разомкнутого треугольника трансформатора заземления нейтрали включить низковольтный резистор.
Подобное резистивное заземление нейтрали ограничивает также напряжение смещения нейтрали в компенсированных сетях.
В [Л1] доказана эквивалентность схем подключения высоковольтного и низковольтного резистора с точки зрения уровня перенапряжений при ОЗЗ. Результаты моделирования дугового ОЗЗ полностью совпали. Кратность уровня напряжения в обеих схемах не превышала 2-2,5 величины фазного напряжения.
Кроме подавления феррорезонансных процессов, резистор разряжает сеть в случае, когда дуга замыкается один раз за период и, фактически, является выпрямителем, приводящим к перевозбуждению индуктивности сети постоянным током.
Сопротивление резистора выбирается по условию ограничения напряжения при ОЗЗ и обеспечения чувствительности защиты от ОЗЗ.
На распределительных устройствах, подключаемых к питающей подстанции, необходимо применение ТН без заземления нейтрали.
Одной из причин высокой повреждаемости ТН является полное отсутствие их защиты. Применение предохранителей ПКН001 и ПКТ неоправданно, так как их токи срабатывания значительно превышают предельно допустимые токи первичных обмоток ТН, составляющие для ТН 6 кВ — 0,115 А, для ТН 10 кВ — 0,109 А и для ТН 35 кВ — 0,049 А.
При феррорезонансе токи достигают нескольких десятков ампер. Поэтому по рекомендации завода-изготовителя необходимо применение ТН со встроенным предохранительным устройством с током срабатывания не более 0,7 А за время срабатывания не более 20-30 с, например, антирезонансных ТН типа ЗхЗНОЛП напряжением 6 -10 кВ.
Выводы:
1. Для исключения перенапряжений необходимо предусмотреть:
- в сетях 35 кВ — подключение к нейтрали 35 кВ силового трансформатора высоковольтного резистора;
- в сетях 10 кВ — подключение в разомкнутый треугольник трансформаторов заземления нейтрали низковольтного резистора.
2. Для исключения феррорезонанса целесообразно между фазным проводником и землёй подключить конденсаторную установку необходимой мощности на ток не менее 4 А.
3. Для защиты от повреждений необходимо применение антирезонансных ТН со встроенными в ТН предохранительными устройствами, например, типа ЗхЗНОЛП напряжением 6-10 (кВ).
4. На распределительных устройствах, где не требуется контроль изоляции, целесообразно применение ТН без заземления нейтрали.
Литература:
- Сивокобыленко В. Ф., Лебедев В. К., Сердюков Р. П. Переходные процессы в электрических сетях с резистивным заземлением нейтрали. Тезисы. Технические науки — Электротехника. – Донецкий национальный технический университет.
- Халимов Ф. X., Евдокунин Г. А., Таджибаев А. Н. Защита сетей 6 — 10 кВ от перенапряжения. — Санкт-Петербург, 2001
Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.