Содержание

1. Общая часть

Коммутации обмоток реле в цепях постоянного тока релейной защиты и автоматики обычно сопровождается значительными перенапряжениями, которые могут представлять опасность для используемых в этих цепях полупроводниковых приборов. Для защиты транзисторов, работающих в режиме переключения, стали применяться защитные цепочки (рис.1), которые присоединяются параллельно обмотке коммутируемого реле (рис.2 – здесь обмотка коммутируемого реле представлена схемой замещения – индуктивностью L, активной составляющей сопротивления R и результирующей межвитковой емкостью С) и снижают перенапряжения, возникающие между зажимами обмотки 1 и 2.

Рис.1 - Защитные цепочки, применяемые для снижения коммутационных перенапряжений

Рис.1 — Защитные цепочки, применяемые для снижения коммутационных перенапряжений

Рис.2 - Защита транзистора VT с помощью защитной цепочки

Рис.2 — Защита транзистора VT с помощью защитной цепочки

Однако в настоящее время определению параметров защитных цепочек и оценке их влияния на работу устройств релейной защиты не удаляется достаточного внимания. Кроме того, при разработке и проектировании устройств релейной защиты с применением полупроводниковых диодов, подверженных воздействию коммутационных перенапряжений, защита диодов во многих случаях не предусматривается.

Это приводит к довольно частому выходу диодов из строя и отказу или неправильному действию устройства. Примером цепей, где на диод могут воздействовать перенапряжения, служит схема, изображенная на рис.3. Здесь разделяющий диод VD оказывается под воздействием коммутационного перенапряжения и может быть поврежден при размыкании контактов KI и замкнутом положении контактов K2.Для защиты этого диода к зажимам 1 и 2 обмотки реле К3 должна быть присоединена защитная цепочка. Для защиты диодов могут быть использованы те же защитные средства, которые применяется для защиты транзисторов (рис.1).

Рис.3 - Цепи, в которых разделяющий диод VD может подвергаться воздействию коммутационных перенапряжений

Рис.3 — Цепи, в которых разделяющий диод VD может подвергаться воздействию коммутационных перенапряжений

2. Определение параметров защитных цепочек

Значения параметров защитных цепочек определяются на основании условия снижения воздействия перенапряжений на защищаемый полупроводниковый прибор до допустимого уровня. Это достигается путем создания дополнительного контура для тока, проходящего в обмотке реле.

Коммутационное перенапряжение Uп, воздействующее на полупроводниковый прибор при переходном процессе, определяется как [Л1]:

Uп= Uс+Е (1)

где:

  • Е – напряжение источника питания оперативного тока;
  • Uс – коммутационное перенапряжение на обмотке реле.

Перенапряжение Uп должно соответствовать условию [Л2]:

Uп < 0,7*Uдоп (2)

где: Uдоп – максимально допустимое значение напряжения полупроводникового прибора.

На основании равенства (1) максимально допустимое напряжение на обмотке коммутируемого реле в случае применения защитных цепочек:

Uм=0,7Uдоп.-Е (3)

Условие (3) является исходным для определения параметров защитных цепочек:

2.1 Диод-стабилитрон

При использовании защитной цепочки диод-стабилитрон напряжение стабилизации равного Uм, определяемому из равенства (3).

2.2 Диод-резистор

Значения сопротивления резистора при коммутации ряда распространенных в технике релейной защиты и автоматике реле определяются с помощью кривых, изображенных на рис.4, и соответствую точке пересечения кривой Uм=f(Rp) с прямой (0,7*Uдоп.-Е) параллельной оси Rр. Кривые получены путем измерения перенапряжений с помощью лучевого осциллографа с использованием высокоомного омического делителя напряжений. Мощностью резистора не играет существенной роли и может быть принята 1-2 Ватта.

Рис.4 а) - Зависимость Uм=f(Rp) для реле РП-23/220 (кривая 1), РП-252/220 (кривая 2), реле серий ЭВ100 (без искрогасительного контура, (кривая 3)

Рис.4 а) — Зависимость Uм=f(Rp) для реле: РП-23/220 (кривая 1), РП-252/220 (кривая 2), реле серий ЭВ100 (без искрогасительного контура, (кривая 3)

Рис.4 б) - Зависимость Uм=f(Rp) для реле РУ21/220

Рис.4 б) — Зависимость Uм=f(Rp) для реле РУ21/220

Рис.4 в) - Зависимость Uм=f(Rp) для реле: РПУ-2/220 (кривая 1), РП222-У4/220 (кривая 2), РП255/220 (кривая 3), РП251/220 (кривая 4)

Рис.4 в) — Зависимость Uм=f(Rp) для реле: РПУ-2/220 (кривая 1), РП222-У4/220 (кривая 2), РП255/220 (кривая 3), РП251/220 (кривая 4)

2.3 Защитный диод

При использовании защитного диода Uс=0 и напряжение на защищаемом полупроводниковом приборе согласно (1) Uп=Е.

2.4 Выбор защитной RC – цепочки

Значение сопротивления R (сопротивление резистора RC-цепочки) определяется из условия ограничения токовой нагрузки на коммутирующие контакты от тока заряда емкости Сз (емкость конденсатора RC-цепочки) допустимой нагрузкой, т.е.

Iоз=Е/Rз < Iдоп. (4)

Сопротивление резистора RC-цепочки, исходя из допустимой коммутирующей способности контактов наиболее распространенных в устройствах защиты и автоматики реле, с достаточным запасом может быть принято 2 кОм, а мощность – 1-2 Ватта.

Значение емкости Сз определяется графическим путем и соответствует точке пересечения кривой зависимости Uм=f(Сз) с прямой (0,7*Uдоп.-Е), параллельной оси Сз (см.рис.5).

Номинальное напряжение Uном. емкости Сз должно соответствовать условию Е < 0,7*Uном.

Рис.5 а) - Зависимость Uм=f(Сз) для реле: РП-252/220 (кривая 1), РУ21/220 (кривая 2)

Рис.5 а) — Зависимость Uм=f(Сз) для реле: РП-252/220 (кривая 1), РУ21/220 (кривая 2)

Рис.5 б) - Зависимость Uм=f(Сз) для реле: РП-251/220 (кривая 1), РП222-У4/220 (кривая 2), РПУ-2/220 (кривая 3)

Рис.5 б) — Зависимость Uм=f(Сз) для реле: РП-251/220 (кривая 1), РП222-У4/220 (кривая 2), РПУ-2/220 (кривая 3)

Рис.5 в) - Зависимость Uм=f(Сз) для реле: РП-23/220 (кривая 1), реле серий ЭВ100 (без искрогасительного контура, (кривая 2), РП-255/220 (кривая 3)

Рис.5 в) — Зависимость Uм=f(Сз) для реле: РП-23/220 (кривая 1), реле серий ЭВ100 (без искрогасительного контура, (кривая 2), РП-255/220 (кривая 3)

2.5 Выбор диодов защитных цепочек

Выбор диодов защитных цепочек производится по максимально допустимому напряжению диодов, исходя из условия:

Е < 0,7*Uдоп. (5)

3. Влияние защитных цепочек на увеличение токовой нагрузки на коммутируемые контакты

Рассматриваемые защитные цепочки практически не увеличивают токовую нагрузку на коммутирующие контакты: при наличии в защитной цепочке полупроводникового диода увеличение токовой нагрузки происходит на величину обратного тока диода, который, имея значение до нескольких десятков микроампер, весьма мал по сравнению с током в обмотке реле. Дополнительная нагрузка на коммутирующие контакты в случае применения защитной RC – цепочки определяется током активной утечки конденсатора, который также очень мал и может не приниматься в расчет. Следует отметить, что защитные цепочки, снижая величину коммутационных перенапряжений, облегчают условия работы коммутирующих контактов.

4. Защитные цепочки, рекомендуемые для применения

Для защиты полупроводниковых приборов, используемых в цепях постоянного тока релейной защиты и автоматики, рекомендуется применять RC – цепочки и диод-резистор, так как повреждение любого из входящих в них элементов не приводит к отказу в действии устройства.

5. Способ снижения коммутационных перенапряжений при использовании транзистора в качестве переключающего элемента

Коммутационные перенапряжения, возникающие при отключении тока в обмотке реле с помощью транзистора, могут быть снижены до безопасного уровня путем увеличения времени переключения транзистора из открытого состояния в запертое до 1мс (Л3). Учитывая, что собственное время переключения транзистора находится в диапазоне от одной до нескольких микросекунд, увеличение его можно осуществить путем включения в цепь управления транзистора параллельного RC контура (рис.6).

Рис.6 - Способ снижения коммутационных перенапряжений путем увеличения времени переключения транзистора с помощью R2-C

Рис.6 — Способ снижения коммутационных перенапряжений путем увеличения времени переключения транзистора с помощью R2-C

Этот способ может найти применение в тех случаях, когда по характеру работы устройства увеличение времени переключения допустимо, а установка дополнительных элементов (защитных цепочек) в нагрузочной цепи транзистора нежелательна. В отношении нашедших применение на практике статических реле указанный способ, по-видимому, будет наиболее приемлем, так как для отстройки от помех в ряде случаев специально производится замедление их действия.

6. Примеры выбора защиты диодов от коммутационных перенапряжений

На рис.П-1а – П-5а изображены применяемые на практике схемы цепей постоянного тока релейной защиты с разделяющими диодами. В некоторых из этих схем разделяющие диоды могут подвергаться воздействию коммутационных перенапряжений.

1. Рис.П-1а При замкнутом положении контактов K1 и размыкании контактов К2 отключается почти весь ток в обмотке реле К4. При этом между зажимами обмотки реле К4 (в обмотке К4 продолжает протекать обратный ток насыщения диода VD, составляющий единицы микроампер) возникает коммутационное перенапряжение, а потенциал положительного зажима обмотки становится намного ниже потенциала отрицательного полюса источника питания. Разделяющий диод VD оказывается под воздействием обратного напряжения, превышающего максимально допустимое напряжение диода Д229Б.

Рис.П-1а - пример выбора защитных диодов

Рис.П-1а — К3,К4 — обмотки реле, соответственно РП255/220, РП251/220; VD, VD1 — диоды D229Б; VD1,R — защитная цепочка

2. Рис.П-2а. Диоды VD1, VD2 подвергаются воздействию коммутационного перенапряжения при замкнутом положении контактов K1 и размыкании контактов К2, так как при этом отключается почти весь ток в обмотке реле К6, и потенциал ее положительного зажима оказывается намного ниже потенциала отрицательного полюса.

Рис.П-2

Рис.П-2 — К3,К4,К5 — обмотки реле РП252-У4/220; К6 — обмотка реле РПУ-2/220; VD1-VD6 — диоды D229Б; VD5,R4 — искрогасительный контур; VD6,R5 — защитная цепочка

3. Рис.П-3а. При отключении тока в обмотке реле К7 контактами К2, когда контакты К1 находятся в замкнутом положении, переходной процесс происходит аналогично рассмотренному выше. Коммутационное перенапряжение воздействуют на диоды VD1, VD2.

Рис.П-3

Рис.П-3 — К3 — обмотка указательного реле; К4,К5,К6 обмотки реле РП252-У4/220, К7 — обмотка реле РПУ-2/220; VD1-VD6 — диоды D229Б; R1,R2 — резисторы соответственно, 3000 и 2000 Ом; VD5,R6 — искрогасительный контур; VD6,R7 — защитная цепочка; SX — накладка

4. Рис.П-4. В этой схеме разделяющие диоды не подвергаются воздействию коммутационных перенапряжений.

Рис.П-4

Рис.П-4 — К3, К4 — обмотки указательных реле; К5 — последовательная обмотка промежуточного реле; К6,К7 обмотки реле РП222-У4/220; VD1, VD2 — диоды D229Б; R — резистор 1000 Ом;

5. Рис.П-5а. Диодно-резисторные цепочки, присоединяемые параллельно обмоткам реле (см. также рис.П-2а, П-3а) и предназначенные для уменьшения искрения на контактах, в какой-то степени ограничивают коммутационное перенапряжения на разделяющих диодах. Использование в этих цепочках двух, вместо одного, последовательно соединенных диодов с параллельно присоединенными к ним резисторами (служащими для равномерного распределения обратного напряжения по диодам) предпринято с той целью, чтобы не допускать пробоя диодов этих цепочек от воздействия перенапряжений.

Однако возможность воздействия коммутационного перенапряжения на диоды-резисторных цепочек в схеме рис.П-5а (а также в схемах П-2а, П-3а) исключена (Предполагается, что перенапряжения не могут также попасть в схеме рис.П-5а со стороны источника питания). Поэтому все эти сравнительно сложные цепочки целесообразно заменить на цепочки диод-резистор (рис.П-2б, П-3б, П-5б). причем, при незначительной вероятности обрыва цепи разделяющих диодов, имеется возможность применить вместо трех одну общую цепочку диод-резистор, присоединив ее параллельно обмотке реле К8 (рис.П-5в).

Общая защитная цепочка диод-резистор, наряду со снижением уровня коммутационных перенапряжений, воздействующих на разделяющие диоды VD1-VD4, способствуют уменьшению искрения на контактах.

Рис.П-5

Рис.П-5 — К4, К5 — обмотки реле РП223/220; К6,К7,К8 — обмотки реле РП23/220; VD1-VD14 — диоды D229Б; R1 — резистор 1000 Ом;

7. Выбор защитной цепочки

Рекомендованные в методических указаниях для применения защитной цепочки диод-резистор и RC-цепочка являются равноценными с точки зрения их защитных свойств (RC-цепочка менее эффективна, когда конденсатор предварительно не заряжен). Выбираем цепочку диод-резистор как имеющую меньшие габариты.

8. Выбор параметров защитных цепочек

8.1 Выбор диодов

Диоды защитных цепочек выбираются на основании условия:

Е < 0,7*Uдоп. (5)

Учитывая, что Е=220 В, выбираем диод типа Д229Б, имеющий Uдоп=400В.

8.2 Выбор резисторов

Значения сопротивления резистора определяются с помощью кривых на рис.4 и соответствуют точке пересечения кривой Uм=f(Rp) с прямой 0,7*Uдоп.-Е=0,7*400-220=60В, параллельной оси Rр.

В схемах, представленных на рис.П-1б, П-2б, П-3б сопротивления резистора защитной цепочки определяется по кривым для реле РП-251, РПУ-2 и соответственно равны R=2,4 кОм, R5=4,2 кОм, R7=4,2 кОм.

Расчетным для схемы на рис.П-5в является случай отключения контактами К3 трех параллельно соединенных обмоток реле К6, К7, К8 при замкнутом положении контактов К1. При этом, если в схеме на рис.П-5в отсутствует защитная цепочка, то диоды VD1, VD2 подвергаются воздействию коммутационного перенапряжения. Сопротивление резистора защитной цепочки определяется как эквивалентное трем параллельно соединенным равным сопротивлениям, одно из которых (Rр) определяется по кривой рис.4 для реле РП-23:

R2=Rр/3=2,2/3=0,773 кОм

В схеме, изображенной на рис.П-5в, заслуживает внимания рассмотрение вопроса о возможности срабатывания реле К8 при размыкании контактов К2. Ответ на этот вопрос в рассматриваемом случае можно получить, сравнив максимальное значение тока, проходящего, а обмотке реле К8 в переходном режиме, с минимальным током срабатывания этого реле. Ток I, проходящий в обмотке реле К8 при размыкании контактов К2, складывается из тока I1, представляющего часть суммы токов в обмотках реле К4, К5 и тока I2 – части суммы токов в обмотках реле К6, К7. максимальные значения токов I1, I2, I определяются следующим образом:

Определение тока в реле К8

Здесь: Iк4, Iк5, Iк6, Iк7 – токи, проходящие соответственно в обмотках реле К4, К5, К6, К7.

Сопротивление добавочного резистора

где:

  • 220 – напряжение источника питания (В);
  • 9300, 9250 – сопротивления постоянному току, соответственно, обмотки реле РП-23 и последовательно соединенной с добавочным резистором обмотки реле РП-223 (Ом).

Минимальный ток срабатывания реле К8 (РП-23):

Минимальный ток срабатывания реле К8

Таким образом, величина тока, проходящего в обмотке реле К8 при размыкании контактов К2, недостаточна для срабатывания реле (Если Iм > Iср.к8, то реле К8 сработает при выполнении условия
tб > tср, где:

  • tср – время, в течении которого Iм > Iср.к8;
  • tб – время срабатывания реле К8.

9 Список литературы:

  1. Федоров Ю.К., Анализ эффективности средств защиты полупроводниковых приборов от коммутационных перенапряжений в цепях постоянного тока релейной защиты и автоматики, «Электрические станции», №7, 1977 г.
  2. Справочник по полупроводниковым диодам, транзисторам и интегральным схемам. Под общей ред. Н.Н. Горюнова, 1972 г.
  3. Федоров Ю.К., Перенапряжения при бездуговом отключении индуктивных цепей постоянного тока в системах релейной защиты и автоматики, «Электрические станции», №2, 1973 г.
  4. Алексеев В.С., Варганов Г.П., Панфилов Б.И., Розенблюм Р.З., Реле защиты, изд. «Энергия», М., 1976 г.
Всего наилучшего! До новых встреч на сайте Raschet.info.